skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Frietze, Seth"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The ATPase family AAA+ domain containing 2 (ATAD2) protein and its paralog ATAD2B have a C-terminal bromodomain (BRD) that functions as a reader of acetylated lysine residues on histone proteins. Using a structure−function approach, we investigated the ability of the ATAD2/B BRDs to select acetylated lysine among multiple histone post-translational modifications. The ATAD2B BRD can bind acetylated histone ligands that also contain adjacent methylation or phosphorylation marks, while the presence of these modifications significantly weakened the acetyllysine binding activity of the ATAD2 BRD. Our structural studies provide mechanistic insights into how ATAD2/B BRD-binding pocket residues coordinate the acetyllysine group in the context of adjacent posttranslational modifications. Furthermore, we investigated how sequence changes in amino acids of the histone ligands impact the recognition of an adjacent acetyllysine residue. Our study highlights how the interplay between multiple combinations of histone modifications influences the reader activity of the ATAD2/B BRDs, resulting in distinct binding modes. 
    more » « less
  2. Abstract BackgroundEpigenomic profiling assays such as ChIP-seq have been widely used to map the genome-wide enrichment profiles of chromatin-associated proteins and posttranslational histone modifications. Sequencing depth is a key parameter in experimental design and quality control. However, due to variable sequencing depth requirements across experimental conditions, it can be challenging to determine optimal sequencing depth, particularly for projects involving multiple targets or cell types. ResultsWe developed thepeaksatR package to provide target read depth estimates for epigenomic experiments based on the analysis of peak saturation curves. We appliedpeaksatto establish the distinctive read depth requirements for ChIP-seq studies of histone modifications in different cell lines. Usingpeaksat,we were able to estimate the target read depth required per library to obtain high-quality peak calls for downstream analysis. In addition,peaksatwas applied to other sequence-enrichment methods including CUT&RUN and ATAC-seq. Conclusionpeaksataddresses a need for researchers to make informed decisions about whether their sequencing data has been generated to an adequate depth and subsequently sufficient meaningful peaks, and failing that, how many more reads would be required per library.peaksatis applicable to other sequence-based methods that include calling peaks in their analysis. 
    more » « less
  3. null (Ed.)